Proactive Quality Control based on Ensemble Forecast Sensitivity to Observations

Daisuke Hotta^{1,2}

Eugenia Kalnay¹, Yoichiro Ota²

¹ University of Maryland ² Japan Meteorological Agency

July 16th, 2014 EMC Seminar

Outline

- 1. EFSO (Ensemble Forecast Sensitivity to Observations) and "Proactive QC"
- 2. EFSR (Ensemble Forecast Sensitivity to Observation Error Covariance matrix R) and tuning of R
- 3. Future Directions: Operational Applications

(Appendix: semi-implicit Lorenz N-cycle scheme)

Part 1:

EFSO (Ensemble Forecast Sensitivity to Observations) and "Proactive QC"

Motivation: The NCEP "forecast skill dropout" problem

- NCEP's 5-day Forecast skill is generally very high (~ 0.9 level)
- However, it occasionally drops to a low level (= "dropout")
- In some cases, all NWP centers suffer.
- But in some cases, NCEP does suffer while ECMWF does not.

Motivation: The NCEP "forecast skill dropout" problem

- "Culprit" is not the model but "bad observations" (or inability of DA system to properly assimilate them)
- → How can we detect those "flawed" observations?

EFSO: Ensemble Forecast Sensitivity to Observations

- Quantifies how much each observation improved/degraded the forecast
- First invented for a variational DAsystem using the *adjoint method* by Langland and Baker (2004)
- Liu and Kalnay (2008) adapted it to LETKF (*no adjoint*)
- Kalnay et. al (2012) gave an improved, simpler formulation
- The new formulation is
 - more accurate
 - simpler and easier to implement
 - applicable to any formulation of EnKF
- Ota et al. (2013) successfully implemented the new EFSO into the NCEP's operational GFS system

Ota et al. (2013): Identification of "flawed" observations by 24-hour EFSO

Table 3. List of local 24-hour forecast failure cases (initial time from 00 UTC, 8 January 2012, to 18 UTC 7 February 2012)

Initial	Area	Size	Rate	N	Denied observation (denied number/total number)	Change (estimate)
06 UTC JAN 12	50N-80N 145E-175W	1.99	1.36	5	AMSUA ch4, 5, 6 (2735/125063)	-8.7% (-19.5%)
00 UTC JAN 16	30N-60N 20W-0	2.71	1.35	6	GPSRO 600–950 hPa (50/4918)	-0.6% (-4.3%)
18 UTC JAN 27	30S-0 105E-120E	2.40	1.21	1	AIRS (19908/670041)	-0.2% (-6.0%)
00 UTC JAN 30	70S-40S 165E-165W	2.00	1.25	6	AMSUA ch1, 3, 4, 5, 15 (3822/164934)	-4.7% (-12.8%)
06 UTC FEB 2	50N-80N 150W-110W	3.01	1.22	5	GPSRO 250-400 hPa, 600-850 hPa (407/13 092)	-11.7% (-8.7%)
06 UTC FEB 4	30N-60N 150W-130W	1.81	1.26	3	IASI (57950/1177256), HIRS ch3, 4, 9, 11, 12,	-25.5% (-81.6%)
					14, 15 (785/73419), Aircraft 950 hPa ~, 125–600 hPa	
					(5794/100 896)	
18 UTC FEB 6	60N-90N 40E-100E	1.71	1.38	2	MODIS_Wind (10 970/43 452)	-28.4% (-17.7%)

- Identified 7 cases of potential "regional forecast skill dropouts"
- Rerun the analyses and forecasts without using "flawed" obs. identified by 24-hour EFSO
- The forecast errors were substantially reduced.

"Proactive QC": Proposed Algorithm

Suppose we wish to identify and delete "flawed" obs. at 00h.

- 1 Run regular DA cycle from -06h to 00h.
- 2 Run regular DA cycle from 00h to 06h.
- 3 Detect "regional dropouts" using the information available from (1) and (2).
- 4 Perform 6-hour EFSO to identify "flawed" obs. at 00h.
- 5 If "flawed" obs. are identified, repeat 00h analysis without using the detected "flawed" obs.

Key questions to be addressed in order for the Proactive QC to work

- Are 6 hours long enough for detecting "flawed observations"?
 - Forecast errors are computed as Forecast-minus-Analysis
 - When compared to the errors of very short-term forecast, analysis errors might not be small.
 - \rightarrow Estimation of forecast errors becomes more difficult.
- What is the best criterion for rejection of observations? Rejecting too many observations might lead to forecast degradation, but too few would make little difference.

 \rightarrow How to strike the best balance?

Does rejection of those observations really improve analysis and forecast?

Experiments with quasi-operational NCEP's GFS/GSI system Experimental Set-up

(Implemented on top of GFS/hybrid GSI ported to JCSDA's S4 by Dr. Jim Jung)

- Forecast Model: NCEP's GFS model
- **Resolution**: *half* of the operational:
 - T254L64 (deterministic), T126L64 (ensemble)
- DA system: hybrid GSI (as in the operational), but EnKF part replaced by LETKF
- **Observations**: same as the NCEP operational system
- **Period**: 34 days (Jan Feb, 2012)
- LETKF: Covariance localization and inflation (same as the operational)
- EFSO:
 - Localization: same as LETKF + moving localization of Ota et al. (2013)
 - Error norm: Moist total energy norm

EFSO's sensitivity to forecast lead time (1) Time average

Average net observation impact for each observation type

• EFSO results are not very sensitive to the choice of evaluation lead time.

EFSO's sensitivity to forecast lead time (2) Individual Cases

Example: MODIS wind near the North Pole on Feb 06 18UTC, 2012

Geographical distribution of EFSO from each. obs.

Red: negative impact ; Blue: positive impact

- Again, EFSO results are not very sensitive to the choice of evaluation lead time, *even for individual cases.*
- → 6 hours are long enough for detection of "flawed" observations.

Key questions to be answered

Are 6 hours long enough for detecting "flawed observations"?

→ Yes. 6-hr EFSO is equally capable of detecting "flawed" obs. as 24-hr EFSO.

- What is the best criterion for rejection of observations?
- Does rejection of those observations really improve analysis and forecast?

Data Denial Experiments Case study (1): MODIS case 2012-Feb-06-18Z, [60°N—90°N] x [40°E—100°E]

- MODIS wind identified as "flawed" (i.e., with net negative impact).
- There are both **helpful** and **harmful** observations.
- How can we decide which / how many obs. should be denied?

Data Denial Experiments

How many obs. should we reject? Case study (1): MODIS case 2012-Feb-06-18Z, [60°N—90°N] x [40°E—100°E] Relative 24-hr fcst. improvement:= ($e^{f}_{beforeQC} - e^{f}_{afterQC}$)/ $e^{f}_{beforeQC}$ x 100 [%] Data selection based on 6-hour EFSO

- allobs: overall improvement, but with several areas with degradation
- **allneg**: enhanced improvement, reduced degradation
- one-sigma & netzero: less improvement, but with further reduced degradation

Data Denial Experiment Summary of the relative 24-hr forecast improvement for 20 cases (20x4x2=160 experiments)

Case			6-1	hour		24-hour			Case		6-hour			24-hour					
#		allobs	allneg	one- sigma	netzero	allobs	allneg	one- sigma	netzero	#		allobs	allneg	sigma	netzero	allobs	allneg	sigma	netzero
1	max.imp. max.deg. avg.imp.	12% -9% 0.0%	$\begin{array}{c} 11\% \\ -1\% \\ 0.2\% \end{array}$	4% -1% 0.1%	$5\% \\ -1\% \\ 0.1\%$	12% -9% 0.0%	20% -1% 0.3%	0% -1% -0.0%	$6\% \\ 0\% \\ 0.1\%$	11	max.imp. max.deg. avg.imp.	$11\% \\ -6\% \\ 0.5\%$	$9\% \\ -5\% \\ 0.3\%$	$2\% \\ -2\% \\ 0.1\%$	$3\% \\ 0\% \\ 0.1\%$	$\begin{array}{c} 22\% \\ -5\% \\ 0.9\% \end{array}$	$15\% \\ -6\% \\ 0.9\%$	$1\% \\ 0\% \\ 0.0\%$	$2\% \\ 0\% \\ 0.2\%$
2	max.imp. max.deg. avg.imp.	14% -5% -0.1%	$\begin{array}{c} 11\% \\ -4\% \\ 0.3\% \end{array}$	N/A	$4\% \\ 0\% \\ 0.2\%$	N/A	$10\% \\ -5\% \\ 0.1\%$	N/A	$2\% \\ 0\% \\ 0.1\%$	12	max.imp. max.deg. avg.imp.	$37\% \\ -14\% \\ 0.7\%$	$\begin{array}{c} 39\% \\ 12\% \\ 0.7\% \end{array}$	$19\% \\ -2\% \\ 0.5\%$	$\begin{array}{c} 19\% \\ -2\% \\ 0.5\% \end{array}$	$\begin{array}{c} 37\% \\ -14\% \\ 0.7\% \end{array}$	$38\% \\ -19\% \\ 0.4\%$	$1\% \\ 0\% \\ 0.0\%$	$12\% \\ -6\% \\ 0.2\%$
3	max.imp. max.deg. avg.imp.	$13\% \\ -15\% \\ 0.0\%$	$7\% \\ -5\% \\ 0.2\%$	$2\% \\ -1\% \\ 0.0\%$	$4\% \\ -2\% \\ 0.0\%$	7% -8% -0.1%	12% -7% 0.1%	$0\% \\ 0\% \\ 0.0\%$	2% -3% -0.1%	13	max.imp. max.deg. avg.imp.	24 % -9% 1.4%	30% 0% 0.8%	-10% 0.3%	$\begin{array}{c} 19\% \\ -12\% \\ 0.4\% \end{array}$	$\begin{array}{c} 24\% \\ -9\% \\ 1.3\% \end{array}$	26% -10% 1.1%	$0\% \\ 0\% \\ 0.0\%$	$8\% \\ -6\% \\ 0.1\%$
4	max.imp. max.deg. avg.imp.	$25\% \\ -5\% \\ 0.6\%$	$27\% \\ -5\% \\ 0.7\%$	$\begin{array}{c} 15\% \\ -2\% \\ 0.3\% \end{array}$	$13\% \\ -2\% \\ 0.2\%$	3% -6% -0.3%	$4\% \\ -3\% \\ 0.1\%$	1% -5% -0.3%	0% 0% -0.0%	14	max.imp. max.deg. avg.imp.	$5\% \\ 0\% \\ 0.3\%$	$ \begin{array}{c c} 3\% \\ 0\% \\ 0.1\% \end{array} $	$1\% \\ 0\% \\ 0.0\%$	$ \begin{array}{c} 1\% \\ 0\% \\ 0.1\% \end{array} $	$5\% \\ 0\% \\ 0.3\%$	$3\% \\ -1\% \\ 0.1\%$	$0\% \\ 0\% \\ 0.0\%$	$0\% \\ 0\% \\ 0.0\%$
5	max.imp. max.deg. avg.imp.	15% -32% -0.2%	19% 81% -0.2%	23% -30% 2%	$22\% \\ -13\% \\ 0.3\%$	12% -78% -1.3%	10% -21% -0.4%	1% -1% -0.0%	1% -1% -0.0%	15	max.imp. max.deg. avg.imp.	$3\% \\ -2\% \\ 0.1\%$	$1\% \\ -1\% \\ 0.1\%$	1% -1% -0.0%	$1\% \\ -1\% \\ 0.0\%$	13% -16% -0.1%	$35\% \\ -18\% \\ 0.8\%$	$1\% \\ -1\% \\ 0.0\%$	$7\% \\ -10\% \\ 0.2\%$
6	max.imp. max.deg. avg.imp.	9% -9% 0.0%	$15\% \\ -6\% \\ 0.4\%$	$12\% \\ -3\% \\ 0.3\%$	$3\% \\ -1\% \\ 0.1\%$	$24\% \\ -38\% \\ 0.0\%$	9% -10% 0.1%	$2\% \\ -2\% \\ 0.0\%$	$3\% \\ -2\% \\ 0.0\%$	16	max.imp. max.deg. avg.imp.	27% -15% 1.9%	$\begin{array}{r} 30\% \\ 21\% \\ 1.8\% \end{array}$	23% -4% 1.3%	$\begin{array}{c} 16\% \\ -2\% \\ 0.7\% \end{array}$	$\begin{array}{c} 30\% \\ -20\% \\ 2.1\% \end{array}$	$33\% \\ -43\% \\ 1.2\%$	$1\% \\ -1\% \\ 0.0\%$	$7\% \\ -1\% \\ 0.3\%$
7	max.imp. max.deg. avg.imp.	17% -9% -0.0%	$13\% \\ -5\% \\ 0.4\%$	$2\% \\ -3\% \\ 0.0\%$	$0\% \\ 0\% \\ 0.0\%$	$\begin{array}{c} 19\% \\ -36\% \\ 0.3\% \end{array}$	$26\% \\ -28\% \\ 0.6\%$	$0\% \\ 0\% \\ 0.0\%$	$4\% \\ -1\% \\ 0.2\%$	17	max.imp. max.deg. avg.imp.	$39 \ 6 \ -15\% \ 0.8\%$	$\begin{array}{c c} 48\% \\ 4\% \\ 2.1\% \end{array}$	$26\% \\ -2\% \\ 1.2\%$	20% -2% 0.8%	$\begin{array}{c} 45\% \\ -15\% \\ 0.7\% \end{array}$	51% -8% 1.6%	0% -1% -0.0%	$15\% \\ -2\% \\ 0.5\%$
8	max.imp. max.deg. avg.imp.	41 % -18% 0.9%	41% -14% 1.1%	21% -5% 0.8%	$10\% \\ -2\% \\ 0.4\%$	41% -18% 0.9%	26% -10% 1.2%	0% 0% -0.0%	$4\% \\ -1\% \\ 0.2\%$	18	max.imp. max.deg. avg.imp.	$\begin{array}{c} 46\% \\ -9\% \\ 2.4\% \end{array}$	46% 2 2%	25% -3% 1.0%	$\begin{array}{c} 21\% \\ -2\% \\ 0.8\% \end{array}$	$36\% \\ -14\% \\ 1.6\%$	$47\% \\ -13\% \\ 2.1\%$	0% -1% -0.0%	$20\% \\ -4\% \\ 0.6\%$
9	max.imp. max.deg. avg.imp.	7% -21% -0.6%	8% -10% -0.4%	8% -3% 00%		3% -2% -0.1%	5% -1% 0.1%	3% -1% 0.0%	3% -1% 0.0%	19	max.imp. max.deg. avg.imp.	$\begin{array}{c} 44.5 \\ -24\% \\ 2.2\% \end{array}$	37% -10% 2.2%	17% -1% 1.0%	$ 14\% \\ -1\% \\ 1.0\% $	6% -17% -0.2%	8% -7% 0.2%	$0\% \\ 0\% \\ 0.0\%$	$2\% \\ -1\% \\ 0.0\%$
10	max.imp. max.deg. avg.imp.	25% -6% 1.1%	$19\% \\ -6\% \\ 0.7\%$	N/A	$6\% \\ 0\% \\ 0.2\%$	N/A	$17\% \\ -12\% \\ 0.8\%$	N/A	$2\% \\ 0\% \\ 0.2\%$	20	max.imp. max.deg. avg.imp.	$\begin{array}{c} 12\% \\ -3\% \\ 0.2\% \end{array}$	$ \begin{array}{c c} 10\% \\ -1\% \\ 0.3\% \end{array} $	$5\% \\ -1\% \\ 0.2\%$	$3\% \\ -1\% \\ 0.0\%$	$\begin{array}{c} 12\% \\ -3\% \\ 0.2\% \end{array}$	N/A	1% -2% -0.0%	$9\% \\ -1\% \\ 0.2\%$

- With allneg:
 - Hemispheric-scale forecast error reduced in 18 out of 20 cases.
 - Local improvement over 30% in 7 cases

Data Denial Experiment Summary of the results for 20 cases

- Data selection based on 6-hour EFSO:
 - **allobs**: improvement mixed with degradation
 - allneg: enhanced improvement, reduced degradation
 Hemispheric-scale forecast error reduced in 18 out of 20 cases.
 Local improvement over 30% in 7 cases.
 - one-sigma & netzero: diminished improvement, but with further reduced degradation
 - For all of the 7 most successful cases, MODIS wind was identified as "flawed."
- Data selection based on 24-hour EFSO: Similar to 6-hour EFSO, but with less improvements.

Key questions to be answered

- Are 6 hours long enough for detecting "flawed observations"?
 - → Yes. 6-hr EFSO is equally capable of detecting "flawed" obs. as 24-hr EFSO is.
- What is the best criterion for rejection of observations?
 - → A matter of trade-off: if some degradation is tolerable, "allneg" should be favorable; else "onesigma" or "netzero" should be used.
- Does rejection of those observations really improve analysis and forecast?
 - → Yes, with >30% local improvement in 7 out of 20 cases.

Summary for **Proactive QC**

- **"Flawed" observations** that potentially lead to forecast skill dropouts **can be detected by EFSO** diagnostics **after only 6 hours** from the analysis.
- Proactive QC does improve forecast and analysis.
- Proactive QC is **innovative**:
 - The first fully flow-dependent QC
 - based on whether observations actually improve/ degrade forecast

Part 2:

EFSR (Ensemble Forecast Sensitivity to Observation Error Covariance matrix **R**) and **Tuning of R**

Motivation

- Data Assimilation combines information from background and observations with an "optimal weight."
- The "optimal weight" is determined based on the background -and observation- error covariances
 B and R.
- In EnKF, B (=P^b) is dynamically estimated, but R is still an external parameter.
 - Truth is unknown. \rightarrow True **R** is also unknown.
 - NWP centers specify it empirically and subjectively.
- \rightarrow We need a systematic method for tuning **R**.

EFSR Formulation

- Daescu and Langland (2013) proposed an *adjoint-based* formulation of forecast sensitivity to R matrix.
- We can formulate an *ensemble* version based on **EFSO** by Kalnay et al. (2012) :

$$\left[\frac{\partial e}{\partial \mathbf{R}}\right]_{ij} \approx \frac{\partial e}{\partial y_i} z_j \approx -\frac{1}{K-1} \left[\mathbf{R}^{-1} \mathbf{Y_0^a} \mathbf{X_t^{fT}}_{\mathbf{t}|\mathbf{0}} \mathbf{C} \left(\mathbf{e_{t|0}} + \mathbf{e_{t|-6}} \right) \right]_i \left[\mathbf{R}^{-1} \delta y^{oa} \right]_j$$

- We know whether fcst. will be improved or degraded by the increase or decrease of **R**.
- \rightarrow We can optimize **R**.

EFSR: Experiments

- Perfect-model experiment with Lorenz '96 system
 - Run two DA cycles, one with incorrect **R**, the other with correct **R**
 - Perform EFSR to the two experiments. Examine if EFSR can detect mis-specification of **R**.
- Real NWP system experiment & Tuning of **R**
 - Diagnose forecast **R**-sensitivity for each observation type by EFSR.
 - Tune **R** based on EFSR and run the DA cycle again.
 Examine if the tuning improves the EFSO impacts of the tuned observation types.

Perfect-model Experiment: Experimental Setup

- Model: Lorenz '96 model with N=40 and F=8.0 $\frac{\mathrm{d}x_j}{\mathrm{d}t} = x_j (x_{j+1} - x_{j-2}) - x_j + F_j$
- **DA method**: 40 member LETKF, no localization
- EFSR: no localization
- Observations: available at every grid point.
- Specification of R:

Name	True obs error variance	Prescribed error variance
SPIKE	$\sigma_j^{o,\text{true}^2} = \begin{cases} 0.8^2 & j = 11\\ 0.2^2 & j \neq 11 \end{cases}$	$\sigma_j^{o2} = 0.2^2$ everywhere
STAGGERED	$\sigma_j^{o,\text{true}^2} = \begin{cases} 0.1^2 & j: \text{ odd} \\ 0.3^2 & j: \text{ even} \end{cases}$	$\sigma_j^{o2} = 0.2^2$ everywhere
LAND-OCEAN	$\sigma_{j}^{o,\text{true}^{2}} = \begin{cases} 1 \le j \le 20\\ 0.3^{2} & (\text{``land''})\\ 21 \le j \le 40\\ 0.1^{2} & (\text{``ocean''}) \end{cases}$	$\sigma_j^{o2} = 0.2^2$ everywhere

- Erroneous obs. variance only at the 11-th grid pt.
- DA system assumes constant **R** for all grid pts.

Design is inspired by Liu and Kalnay (2008)

Perfect-model Experiment: **Result (SPIKE experiment)**

• For "incorrect-R," EFSR detects the mis-specification of R at the 11th grid point.

 \rightarrow We can detect mis-specified **R**

• For "correct-R," EFSR diagnoses almost-zero sensitivity. \rightarrow No "false alerts" 26

EFSR for GFS / GSI-LETKF hybrid

- Aircraft, Radiosonde and AMSU-A: large positive sensitivity
- **MODIS wind** : negative sensitivity
- → Tuning experiment:
 - Aircraft, Radiosonde and AMSU-A: reduce **R** by 0.9
 - MODIS wind: increase **R** by 1.1

Tuning Experiment: Result EFSO **before/after** tuning of **R**

- Aircraft, Radiosonde, AMSU-A:
 - significant improvement of EFSO-impact
 (as expected)
- MODIS wind :
 - No improvement in EFSO (contrary to expectation)

Why no improvement in MODIS?

- MODIS had "flawed" obs. along with "helpful" obs.
- The "flawed" obs. might have resulted in incorrect estimation of EFSR.

Excluding cases where MODIS wind had negative impact

- MODIS wind exhibited several negatively-impacting cases.
- Exclude negative cases
- → EFSR for MODIS becomes neutral
- → Consistent with the result of tuning experiment

Lesson:

Before performing
 EFSR, we should
 remove "bad" obs.

Summary for EFSR

- EFSR gives information on whether we should increase/reduce prescribed observation error covariance **R**.
- Tuning of **R** based on this diagnostics improves the EFSO.

• \rightarrow EFSR can be used to *systematically* optimize **R**.

Future Directions:

Future plans

Immediate future:

- Implementation of Proactive QC into the real operational system
 - Can the operational system
 - 1. wait for 6 hours?
 - 2. afford to do analysis again?

Long-term Future Directions:

- Applications of EFSO and EFSR
 - Collaboration with instrument developers
 - Acceleration of development for assimilation of new observing systems

Implementation to the real operational system (1) Can we wait for 6 hours?

Idea: Exploit the time lag between "early analysis" and "cycle (final) analysis"

(suggested by Dr. John Derber, 2013)

cycle (final) analysis: maintains analysis-forecast cycle Time **early analysis**: provides initial condition for extended forecast

Implementation to the real operational system (1) we don't need to wait 6 hours!

Idea: Exploit the time lag between "early analysis" and "cycle (final) analysis"

(suggested by Dr. John Derber, 2013)

cycle (final) analysis: maintains analysis-forecast cycle Time **early analysis:** provides initial condition for extended forecast

Implementation to the real operational system (2) can we afford to do analysis twice?

Idea: Use **approximated analysis** rather than doing analysis again:

- Using the approximation to Kalman gain:

$$\mathbf{K} \approx \frac{1}{K-1} \mathbf{X}_0^a \mathbf{X}_0^{aT} \mathbf{H}^T \mathbf{R}^{-1} \approx \frac{1}{K-1} \mathbf{X}_0^a \mathbf{Y}_0^{aT} \mathbf{R}^{-1}$$

the change in analysis by the denial of observations can be approximated by:

$$\bar{\mathbf{x}}_{0}^{a,\text{deny}} - \bar{\mathbf{x}}_{0}^{a} \approx -\mathbf{K}\delta\bar{\mathbf{y}}_{0}^{ob,\text{deny}} \approx -\frac{1}{K-1}\mathbf{X}_{0}^{a}\mathbf{Y}_{0}^{aT}\mathbf{R}^{-1}\delta\bar{\mathbf{y}}_{0}^{ob,\text{deny}}$$

As inexpensive as EFSO.

\rightarrow No need to repeat analysis

 \rightarrow Can minimize the time delay

Application of EFSO: (1) Collaboration with instrument developers

- In our experiments, in several cases, MODIS wind showed large negative impacts that caused "regional dropouts."
- → EFSO can be used to build a database of "flawed" observations along with their relevant metadata.
 - Provide such database to instrument developers so that they can fix problems with their algorithms.
 - Collaborate with instrument developers to determine which metadata would be helpful to them.

Application of EFSO: (2) Acceleration of development for assimilation of new observing systems

- Traditional approach: compare
 - Test: with a new observing system
 - Control: without a new observing system
- Difficulty with this approach:
 - Signals from a new observing system is obscured by the many observations that are already assimilated in Control.
 - \rightarrow Hard to obtain statistically significant results
- \rightarrow EFSO-based data selection will enable efficient determination of an optimal way to assimilate new observing systems.
- An optimal specification of **R** is also a difficult issue for assimilation of new observing systems.
- \rightarrow Our EFSR diagnostics should provide useful guidance.

Conclusions

- 6-hour EFSO can successfully identify "flawed" observations.
- Rejecting them (Proactive QC) does improve the analysis and forecast.
- Database of "flawed" obs. can help instrument developers to improve their algorithms.
- Proactive QC can readily be implemented into the operational system.
- **EFSR** enables systematic tuning of **R** matrix.
- **EFSO and EFSR** together can accelerate development of the assimilation of new observing systems.

Acknowledgements

- My advisor Prof. Eugenia Kalnay for advice and encouragement
- **Prof. Takemasa Miyoshi** of RIKEN/AICS and University of Maryland for guidance and help
- JCSDA and its Director Dr. Sid Boukabara for access to the S4 supercomputer
- **Dr. Jim Jung** of NCEP for kind guidance on S4
- JPSS program for support
- Mr. Yoichiro Ota for EFSO and GFS-LETKF code
- Government of Japan, in particular Japan Meteorological Agency (JMA) for funding and support
- **Dr. Jeff Whitaker, Dr. Sajal Kar and Dr. Jim Purser** for discussion and advice (on the Appendix)
- ... and many others and all of you.

