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Part 1:
EFSO (Ensemble Forecast Sensitivity to Observations)
and “Proactive QC”



Motivation:
The NCEP “forecast skill dropout” problem
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From Kumar et al. (2009)

NCEP’s 5-day Forecast skill is generally very high (~ 0.9 level)
However, it occasionally drops to a low level (= “dropout”)
In some cases, all NWP centers suffer.

But in some cases, NCEP does suffer while ECMWF does not.



Motivation:
The NCEP “forecast skill dropout” problem
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e “Culprit” is not the model but “bad observations”
(or inability of DA system to properly assimilate them)

—> How can we detect those “flawed” observations?



EFSO: Ensemble Forecast Sensitivity to Observations

. * (Quantifies how much each
Perceived . .
Forecast observation improved/degraded the
Errors forecast

€

e * First invented for a variational DA-
€1 system using the adjoint method by
Langland and Baker (2004)
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* Liu and Kalnay (2008) adapted it to
LETKF (no adjoint)
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Ota et al. (2013) successfully
implemented the new EFSO into the
NCEP’s operational GFS system

analysis spread in obs. space



Ota et al. (2013): Identification of “flawed” observations
by 24-hour EFSO

Table 3. List of local 24-hour forecast failure cases (initial time from 00 UTC, 8 January 2012, to 18 UTC 7 February 2012)

Initial Area Size Rate N Denied observation (denied number/total number) (Change (estimate)\
06 UTC JAN 12 50N-80N 145E-175W 199 136 S5 AMSUA ch4, 5, 6 (2735/125063) —8.7% (—19.5%)
00 UTC JAN 16 30N-60N 20W-0 271 1.35 6 GPSRO 600-950hPa (50/4918) —0.6% (—4.3%)
18 UTC JAN 27 30S-0 105E-120E 240 1.21 1 AIRS (19908/670041) —0.2% (—6.0%)
00 UTC JAN 30 70S-40S 165E-165W  2.00 1.25 6 AMSUA chl, 3, 4, 5, 15 (3822/164934) —4.7% (—12.8%)
06 UTC FEB2 S50N-80N 150W-110W 3.01 1.22 S5 GPSRO 250-400hPa, 600-850 hPa (407/13092) —11.7% (—8.7%)
06 UTC FEB4 30N-60N 150W-130W 1.81 1.26 3 IASI (57950/1177256), HIRS ch3, 4,9, 11, 12, —25.5% (—81.6%)
14, 15 (785/73 419), Aircraft 950 hPa ~, 125-600 hPa
5794/100 896)
IS UTCFEB 6 60N-90N 40E-100E 1.71 1.38 1)(10970/43452) < —28.4% (—Z7.7%)

 Identified 7 cases of potential “regional forecast
skill dropouts”

« Rerun the analyses and forecasts without using
“flawed” obs. identified by 24-hour EFSO

* The forecast errors were substantially reduced.



“Proactive QC”: Proposed Algorithm

Suppose we wish to identify and delete “flawed” obs. at
0Oh.

@ Run regular DA cycle from -06h to 00h.
@ Run regular DA cycle from 00h to 06h.

@ Detect “regional dropouts” using the information
available from @ and @

@ Perform 6-hour EFSO to identify “flawed” obs. at 00h.

@ If “flawed” obs. are identified, repeat 00h analysis
without using the detected “flawed” obs.



Key questions to be addressed
in order for the Proactive QC to work

* Are 6 hours long enough for detecting “flawed observations”?
— Forecast errors are computed as Forecast-minus-Analysis

— When compared to the errors of very short-term forecast,
analysis errors might not be small.

—> Estimation of forecast errors becomes more difficult.
 What is the best criterion for rejection of observations?

Rejecting too many observations might lead to forecast
degradation, but too few would make little difference.

- How to strike the best balance?

* Does rejection of those observations really improve analysis and
forecast?



Experiments with quasi-operational
NCEP’s GFS/GSI system

Experimental Set-up
(Implemented on top of GFS/hybrid GSI ported to JCSDA’s S4 by Dr. Jim Jung)
* Forecast Model: NCEP’s GFS model
Resolution: half of the operational:
— T254L64 (deterministic), T126L64 (ensemble)

DA system: hybrid GSI (as in the operational), but EnKF part replaced by
LETKF

* Observations: same as the NCEP operational system
* Period: 34 days (Jan — Feb, 2012)
 LETKF: Covariance localization and inflation (same as the operational)
* EFSO:
* Localization: same as LETKF + moving localization of Ota et al. (2013)

* Error norm: Moist total energy norm



EFSO’s sensitivity to forecast lead time
(1) Time average

Average net observation impact for each observation type

Averaged total Obs. Impact by obs. type Averaged total Obs. Impact by obs. type  Averaged total Obs. Impact by obs. type

Moist Energy norm, EFT=6hr

Moist Energy norm, EFT=12hr
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 EFSO results are not very sensitive to the choice
of evaluation lead time.
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EFSO’s sensitivity to forecast lead time

(2) Individual Cases
Example: MODIS wind near the North Pole on Feb 06 18UTC, 2012

Geographical distribution of EFSO

from each. obs. * Again, EFSO results are not very
Red: negative impact ; Blue: positive impact .l .
paIve IMpatt ; BTUE: posiave imp sensitive to the choice of
the size proportional to the magnitude - ]
" Obs Impacts Type=259, EFT=06hr evaluation lead time, even for
' | individual cases.

- 6 hours are long enough for
detection of “flawed”
o~ ik S S 00 observations.

o Lead-Tie: 24 hrs.g
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Key questions to be answered

* Are 6 hours long enough for detecting “flawed
observations”?

= Yes. 6-hr EFSO is equally capable of detecting
“flawed” obs. as 24-hr EFSO.

 What is the best criterion for rejection of
observations?

* Does rejection of those observations really
improve analysis and forecast?
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Data Denial Experiments
Case study (1): MODIS case
2012-Feb-06-18Z, [60°N—90°N] x [40°E—100°E]

Net EFSO Impact by obs. types

measured with moist total energy norm

Units: J kg
. . I
MODIS -
L |
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MODIS wind identified as

EFSO impact from
each MODIS wind observation
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“flawed” (i.e., with net negative impact).

There are both helpful and harmful observations.

How can we decide which / how many obs. should be denied?

. 100E
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EFSO values

Data Denial Experiments
Selection of the Obs. to be denied
- Try four criteria, perform data denial for each

Distribution of EFSO values from each observation

Example: MODIS wind near the North Pole

Units: J kg

increases fcst. error
- negative impact

0010

netzero

0000

one-sigma

reduces fcst. error
—> positive impact < allneg

allobs >

50 100 150 200 250
Rank
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How many obs. should we reject?
Case study (1): MODIS case
2012-Feb-06-18Z7, [60°N—90°N] x [40°E—100°E]
Relative 24-hr fcst. improvement:= (€, ¢ eac = € atterac )/ €'beforeqc X 100 [%]
Data selection based on 6-hour EFSO

Improved

one-sigma

netzero

180

-50%
Degraded

* allobs: overall improvement, but with several areas with degradation

* allneg: enhanced improvement, reduced degradation

* one-sigma & netzero: less improvement, but with further reduced
degradation
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for 20 cases (20x4x2=160 experiments)

Data Denial Experiment
Summary of the relative 24-hr forecast improvement

Case 6-hour 24-hour Case 6-hour 24-hour
one- one- one- one-

# allobs | allneg | sigma | netzero || allobs | allneg | sigma | netzero # allobs | allneg | sigma | netzero || allobs | allneg | sigma | netzero
max.imp. | 12% | 11% 4% 5% || 12% | 20% 0% 6% max.imp. | 11% 9% 2% 3% | 22% | 15% 1% 2%
max.deg. 9% | 1% | -1% -1% -9% 1% | 1% 0% max.deg. -6% S% | 2% 0% 5% | 6% 0% 0%

1|avgimp. | 0.0% | 0.2% | 0.1% 0.1% || 0.0% | 0.3% | -0.0% 0.1% 11 | avgimp. || 0.5% | _03% | 0.1% 0.1% | 0.9% | 0.9% | 0.0% 0.2%
max.imp. 14% 11% 4% 10% 2% max.imp. 37@ 39% 9% 19% 31% | 38% 1% 12%
max.deg. 5% | -4% 0% -5% 0% max.deg. || -14% Te—igigs® 2%, 2% || -14% | -19% 0% -6%

2 [ avg.imp. | -0.1% | 0.3% | N/A 0.2% N/A | 01% | N/A 0.1% 12 | avg.imp. 0.7% | 07% | 0.5% 0.5% || 0.7% | 0.4% | 0.0% 0.2%
max.imp. 13% % 2% 4% % | 12% 0% 2% max.imp. 24 30% 8% 19% | 24% | 26% 0% 8%
max.deg. | -15% | -5% | -1% -2% -8% 1% 0% -3% max.deg. -9% T—pE 0% -12% 9% | -10% 0% -6%

3 | avg.imp. 0.0% | 0.2% | 0.0% 0.0% || -0.1% | 0.1% | 0.0% -0.1% 13 | avg.imp. 1.4% | 0.8% | 0.3% 0.4% 1.3% | 1.1% | 0.0% 0.1%
maximp. | 95% | 27% | 15% | 13% | 3% | 4% | 1%| 0% maximp. | 5% | 8% | 1%| 1% | 5% | 3%| o%| 0%
max.deg. -5% -5% -2% -2% -6% -3% -5% 0% max.deg. 0% 0% 0% 0% 0% -1% 0% 0%

4 | avg.imp. 0.6% | 0.7% | 0.3% 0.2% || -0.3% | 0.1% | -0.3% | -0.0% 14 | avg.imp. 0.3% | 0.1% | 0.0% 01% | 03% | 0.1% | 0.0% 0.0%
max.imp. 15% 19% 23% 22% 12% 10% 1% 1% max.imp. 3% 1% 1% 1% 13% 35% 1% ™%
max.deg. -32% —Wu.~-30% -13% || -78% | -21% -1% -1% max.deg. 2% -1% -1% 1% | -16% | -18% -1% -10%

5 | avgimp. | 0.2 [-0.2% | §2% | 03% | -13% | 04% | 0.0% | -0.0% 15 | avgimp. | 0.1% QA& -00% | 0.0% | -0.1% | 08% | 0.0% | 02%
maximp. | 9% SRT 12% | 3% | 24%| 9% | 2%| 3% max.imp. 27@ 30% | J3% | 16% | 30%| 33%| 1%| 7%
max.deg. 9% | 6% | -3% 1% || -38% | -10% | -2% -2% max.deg. || -15% T 1%, 2% || -20% | -43% | -1% -1%

6 | avgimp. | 0.0% | 0.4% | 0.3% | 0.1%]| 0.0% | 01% | 0.0% | 0.0% 16 | avgimp. | 1.9% | 18% | 13% | 0.7% | 21%| 12% | 00% | 0.3%
max.imp. | 17% | 13% 2% 0% || 19% | 26% 0% 4% max.imp. | 30| 48% 6% 20% | 45% | 51% 0% 15%
max.deg. 9% | 5% | -3% 0% || -36% | -28% 0% -1% max.deg. || -15%8 ik 2% 2% | -15% | 8% | -1% -2%

7 | avg.imp. 70.0%‘%\0.0% 0.0% || 0.3% | 0.6% | 0.0% 0.2% 17 | avg.imp. O.S%Al.Q% 0.8% | 0.7% | 1.6% | -0.0% 0.5%
maximp. | a1l 1% | W% | 10% | a%| 2% o%| 4% maximp. | a6Q] 46% | J5% | 1% | 36% | 4% | 0% | 20%
max.deg. | -18% | = _50, 2% || -18% | -10% 0% -1% max.deg. -9% sl -3% 2% || -14% | -13% | -1% -4%

8 avg-ifnp. 0.9% | 11% | 08% | 04% | 0.9% | 1.2% | -0.0% | 0.2% 18 | avgimp. | 24%  dedakegy 1:0% | 0.8% | 1.6% | 2.1% | -0.0% | 0.6%
max.imp. % 8% 8% 8% 3% 5% 3% 3% max.imp. || 44 37% 7% 14% 6% 8% 0% 2%
max.deg. | -21%, P FO¥% =y -3% -4% 2% 1% | -1% -1% max.deg. || -24% |-l 1% 1% || -17% | -T% 0% -1%

9 | avg.imp. | -0.6% | -0.4% 0% 01% || -0.1% | 0.1% | 0.0% 0.0% 19 | avgimp. || 2.2% | 2.2% | 1.0% 1.0% || -0.2% | 0.2% | 0.0% 0.0%
max.imp. | 25% | 1000 6% 17% 2% maximp. | 12% | 10% | 5% 3% || 12% 1% 9%
max.deg. 6% | -6% 0% -12% 0% max.deg. SB3% | 1% | -1% -1% -3% -2% -1%

10 | avg.imp. 11% | 0.7% | N/A 02% || N/A| 08% | N/A 0.2% 20 | avg.imp. 02% | 0.3% | 0.2% 0.0% || 0.2% | N/A | -0.0% 0.2%

* With allneg:

 Hemispheric-scale forecast error reduced in 18 out of 20 cases.
[

Local improvement over 30% in 7 cases
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Data Denial Experiment
Summary of the results for 20 cases
* Data selection based on 6-hour EFSO:
— allobs: improvement mixed with degradation
— allneg: enhanced improvement, reduced degradation
Hemispheric-scale forecast error reduced in 18 out of 20 cases.
Local improvement over 30% in 7 cases.

— one-sigma & netzero: diminished improvement, but with further
reduced degradation

— For all of the 7 most successful cases, MODIS wind was identified
as “flawed.”

e Data selection based on 24-hour EFSO: Similar to 6-hour
EFSO, but with less improvements.



Key questions to be answered

* Are 6 hours long enough for detecting “flawed
observations”?

* - Yes. 6-hr EFSO is equally capable of detecting “flawed”
obs. as 24-hr EFSO is.

 What is the best criterion for rejection of
observations?

- A matter of trade-off: if some degradation is
tolerable, “allneg” should be favorable; else “one-
sigma” or “netzero” should be used.

* Does rejection of those observations really improve
analysis and forecast?

* - Yes, with >30% local improvement in 7 out of 20
cases.
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Summary for Proactive QC

“Flawed” observations that potentially lead to
forecast skill dropouts can be detected by EFSO
diagnostics after only 6 hours from the analysis.

Proactive QC does improve forecast and analysis.

Proactive QC is innovative:
— The first fully flow-dependent QC

— based on whether observations actually improve/
degrade forecast



Part 2:
EFSR (Ensemble Forecast Sensitivity to
Observation Error Covariance matrix R) and

Tuning of R
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Motivation

Data Assimilation combines information from
background and observations with an “optimal
weight.”

The “optimal weight” is determined based on the
background -and observation- error covariances
B and R.

In EnKF, B (=PP®) is dynamically estimated, but R is
still an external parameter.
— Truth is unknown. = True R is also unknown.

— NWP centers specify it empirically and subjectively.

- We need a systematic method for tuning R.



EFSR Formulation

* Daescu and Langland (2013) proposed an
adjoint-based formulation of forecast

sensitivity to R matrix.

e We can formulate an ensemble version based
on EFSO by Kalnay et al. (2012) :

Oe Oe 1 — a N oa
laRLj N (‘3in? YUK -1 {R 1YOX‘f:|I(;C (et/o +et|_6)L R0y L

* We know whether fcst. will be improved or degraded
by the increase or decrease of R.

- We can optimize R.



EFSR: Experiments

* Perfect-model experiment with Lorenz 96
system

— Run two DA cycles, one with incorrect R, the other
with correct R

— Perform EFSR to the two experiments. Examine if
EFSR can detect mis-specification of R.

* Real NWP system experiment & Tuning of R

— Diagnose forecast R-sensitivity for each observation
type by EFSR.

— Tune R based on EFSR and run the DA cycle again.
Examine if the tuning improves the EFSO impacts of
the tuned observation types.



Perfect-model Experiment:
Experimental Setup

Model: Lorenz ‘96 model with N=40 and F=8.0

d;
dt

= Ij (Ij_|_1 — l'j_g) — xj —+ F

DA method: 40 member LETKF, no localization
EFSR: no localization
Observations: available at every grid point.
Specification of R:

Name True obs error variance Prescribed error variance
0.8% j=11
SPIKE gotrue? ‘] 092 = 0.22 everywhere
7 0.22 j#11 7
0.12 4: odd
STAGGERED gt ‘7 © 092 = 0.22 everywhere
J 0.3 j: even I
1<5<20
0.32 “land”
LAND-OCEAN | g%t = { 2§ Sa g §) 40 0;?2 = (.22 everywhere
0.12  (“ocean”)

* Erroneous obs. variance

only at the 11-th grid pt.

* DA system assumes

constant R for all grid pts.

Design is inspired by
Liu and Kalnay (2008)
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Perfect-model Experiment:
Result (SPIKE experiment)

24-hr. EFSR sensitivity

1 -
0

8 4t

o . ege e .

o | Negative sensitivity:

forecast error can be
3t . . .
incorrect-R reduced by increasing R

4T _correct-R—s— 1 = Ris too small

| | | L
0 5 10 15 20 25 30 35 40
Grid Number

* For “incorrect-R,” EFSR detects the mis-specification of R
at the 11 grid point.

- We can detect mis-specified R
* For “correct-R,” EFSR diagnoses almost-zero sensitivity.
- No “false alerts”



EFSR for GFS / GSI-LETKF hybrid

Averaged R-sensitivity

Moist 'Energy norm, EFT=6hr

Aircraftl 2

Radiosonde

MODIS wind

AMSU-A

MODIS_Wind
ASCAT
PIBAL
NEXRAD_Winc
Profiler_Wind
Dropsonde
WINDSAT_Wi

SEVIRI

-0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12

Ristoo large
(= should reduce R)

* Aircraft, Radiosonde and AMSU-A: large positive sensitivity
 MODIS wind : negative sensitivity

* -2 Tuning experiment:
e Aircraft, Radiosonde and AMSU-A: reduce R by 0.9

e MODIS wind: increase R by 1.1

27



Tuning Experiment: Result
EFSO before/after tuning of R

Averaged total Obs. Impact by obs. type
Moist Energy norm, EFT=6hr
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e Aircraft, Radiosonde, AMSU-A:
* significant improvement
of EFSO-impact
(as expected)
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SEVIRI

MODIS wind :
No improvement in EFSO
(contrary to expectation)

Why no improvement in MODIS?
e MODIS had “flawed” obs. along with “helpful” obs.
e The “flawed” obs. might have resulted in incorrect estimation of EFSR.
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Excluding cases where
MODIS wind had negative impact

FSO impact by MODIS-Wind

Error Norm: moist total energy Evaluation Lead Time: 06hrs.

1‘ Negathe Impact

Y

Posmve Impact

-2 T T T T i T T T T i

> ]

¥
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Averaged R-sensitivity (MODIS good) Averaged R-sensitivity
Moist Energy norm, EFT=6hr Moist Energy norm, EFT=6hr
‘ i 2, —
e > —

Aircraft

MODIS wind exhibited
several negatively-impacting
cases.

Exclude negative cases

- EFSR for MODIS becomes
neutral

- Consistent with the result
of tuning experiment

Radiosonde
Satellite_Wind

GPSRO

Land-Surface
Marine-Surface
MODIS_Wind

et e LESSON:

Profiler_Wind

wosarwe —© Before performing

WINDSAT_Wir

TCVital
Ozone
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AIRS
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HIRS
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GOES
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—002 000 002 004 006 008 010 012 -0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12

Excluding “flawed” Including “flawed”

MODIS case MODIS case

EFSR, we should
remove “bad” obs.
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Summary for EFSR

* EFSR gives information on whether we should
increase/reduce prescribed observation error

covariance R.

* Tuning of R based on this diagnostics improves
the EFSO.

= EFSR can be used to systematically optimize R.
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Future Directions:



Future plans

Immediate future:
* Implementation of Proactive QC into the real
operational system
— Can the operational system
1. wait for 6 hours?
2. afford to do analysis again?

Long-term Future Directions:
* Applications of EFSO and EFSR

— Collaboration with instrument developers

— Acceleration of development for assimilation of new
observing systems
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Implementation to the real operational system
(1) Can we wait for 6 hours?

ldea: Exploit the time lag between “early analysis”
and “cycle (final) analysis”

(suggested by Dr. John Derber, 2013)

Early
anal.
06 UTC

cycle (final) analysis: maintains analysis-forecast cycle Time
early analysis: provides initial condition for extended forecast
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Implementation to the real operational system
(1) we don’t need to wait 6 hours!

ldea: Exploit the time lag between “early analysis”
and “cycle (final) analysis”

(suggested by Dr. John Derber, 2013)

Early
anal.
06 UTC

cycle (final) analysis: maintains analysis-forecast cycle Time
early analysis: provides initial condition for extended forecast

34



Implementation to the real operational system

(2) can we afford to do analysis twice?

Idea: Use approximated analysis rather than doing
analysis again:
— Using the approximation to Kalman gain:

~ 1 axaTHTR -1  ~ ;XGYGTR—
KNK—_XX H' R K —1

the change in analysis by the denial of observations can be
approximated by:
1 O en
X —xg & —Koyt & - XY Ry pdeny
— As inexpensive as EFSO.
- No need to repeat analysis

— Can minimize the time delay
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Application of EFSO:
(1) Collaboration with instrument developers

* |n our experiments, in several cases, MODIS wind
showed large negative impacts that caused
“regional dropouts.”

- EFSO can be used to build a database of
“flawed” observations along with their relevant

metadata.

— Provide such database to instrument developers so
that they can fix problems with their algorithms.

— Collaborate with instrument developers to determine
which metadata would be helpful to them.



Application of EFSO:
(2) Acceleration of development
for assimilation of new observing systems

* Traditional approach: compare

— Test: with a new observing system

— Control: without a new observing system
e Difficulty with this approach:

— Signals from a new observing system is obscured by the many
observations that are already assimilated in Control.

— Hard to obtain statistically significant results

—> EFSO-based data selection will enable efficient determination of
an optimal way to assimilate new observing systems.

* An optimal specification of R is also a difficult issue for assimilation
of new observing systems.

— Our EFSR diagnostics should provide useful guidance.



Conclusions

6-hour EFSO can successfully identify “flawed”
observations.

Rejecting them (Proactive QC) does improve the analysis
and forecast.

Database of “flawed” obs. can help instrument developers
to improve their algorithmes.

Proactive QC can readily be implemented into the
operational system.

EFSR enables systematic tuning of R matrix.

EFSO and EFSR together can accelerate development of the
assimilation of new observing systems.
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